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Onset of convection in a fluid layer overlying 
a layer of a porous medium 
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A linear stability analysis is applied to a system consisting of a horizontal fluid layer 
overlying a.layer of a porous medium saturated with the same fluid, with uniform 
heating from below. Surface-tension effects at a deformable upper surface are allowed 
for. The solution is obtained for constant-flux thermal boundary conditions. 

1. Introduction 
The onset of convection in a system consisting of a horizontal fluid layer overlying 

a porous medium saturated with that fluid is of geophysical interest. On a smaller 
length scale, the same problem offers the possibility of performing an experiment in 
order to learn something about the properties of the porous medium by observation 
of the Convection in the fluid. In some circumstances the fluid will be a liquid, with 
a free surface, of sufficiently small depth for surface-tension efiects to be important. 
The problem is also of general interest, since it involves the coupling of a sixth-order 
system of differential equations with one of fourth order. 

Well-developed theoretical treatments of convection in a single fluid layer or porous 
layer are available. A convenient reference is Joseph (1976). As far as the author is 
aware, no theoretical work on the combined problem has been published, although he 
knows of two preliminary efforts which have been made by other people, who have had 
some difficulty with boundary conditions. Likewise there appears to be no publishable 
experimental data available. 

In this paper we present a linear stability analysis for the problem, which is formu- 
lated in terms of quite general boundary conditions. We include the possibility of 
a Marangoni effect a t  a deformable upper surface. Since no experimental data are 
available, and since a large number of parameters is involved in even the simplest 
case, we then restrict our solution to the case of constant-flux boundary conditions. 
The small wavenumber expansion is then appropriate, and the solution can be 
obtained in simple analytic form. 

2. Analysis 
Basic diflerential equations 

We take a Cartesian co-ordinate system with origin in the interface between the porous 
medium and the fluid layer and with the z axis vertically upwards. We suppose that 
the fluid layer has thickness d and the upper surface has a deflexion h(x, y) from the 
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mean. Thus the fluid occupies the region 0 < z < d + h, where the Oberbeck-Boussinesq 
equations apply. We assume that non-osoillatory convection occurs. (The principle of 
exchange of stabilities holds for a single layer of either fluid or a porous medium, and 
there is no apparent reason why i t  should not hold here.) Hence it is sufficient to 
consider the steady-state equations for the fluid: 

divu = 0, u = (u,w,w), (1) 

u . V u  = - p i l V P  + vV2u - g[1- a(T - To)] e,, 

u . V T  = K V ~ T ,  

where u = velocity, T = temperature, P = pressure, po = standard density, p= 
dynamic viscosity, v = ,u/po, a = coefficient of volume expansion, k = thermal con- 
ductivity, c = specific heat at constant pressure and K = klpoc, in the fluid. 

Similarly, we suppose that the porous medium occupies the region - d ,  < z < 0, 
where the steady-state Darcy-Oberbeck-Boussinesq equations are 

divum = 0, urn = (um, urn, wm), (4) 

( 5 )  

(6) 

0 = - p i l V P ,  - ( v / K )  u, - g[ 1 - a(T, - To)] e,, 

u, . V T ,  = K,V~T,, 

where u, = seepage velocity, T, = temperature, P, = pressure, k ,  = q5k + (1 - q5)  k,, 
k8 = conductivity of solid matrix, q5 = porosity, K = permeability and K ,  = km/poc, 
in the porous medium. 

Static, conduction solution 

We suppose that the lower boundary (z = - d,) is maintained at a uniform tempera- 
ture TL and the upper boundary ( z  = d )  at a uniform temperature T,. The steady- 
state solution is then 

(7) ,  (8) 

T = T z  To-(T,,-Tu)z/d, (9) 

(10) 

u,,, = 0, (11) 

Tm = P, To - (TL - To) Z/dm, (12) 

pni = pm po-pogz-  (p,ag/2dm) ( T L - T O ) ~ ~ ,  (13) 

h = O ,  u = O ,  

P = P Po - p o p  - (poag/2d) (To - T,) z2, 

where the interface temperature and pressure are 

where Pa is the pressure at  x = d .  

Perturbation equations 

0, = T, - p,, p ,  = P, - Prn and derive the linearized We define 0 = T - p, p = P - 
equations 

(16) divu = 0,  
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polVp - vV2u - gaBe, = 0, 

(To - Tu) d-l w + Kv26 = 0, 

divu, = 0, 

p;lVpm+ (v/K)um-ga6,e, = 0, 

(TL - To) dG1 W, + IC, V26, = 0. 

Operating on (17) with e,. curl curl and using (16), we get 

vV4w -I- gaQi6 = 0, 

where v; = a2Iax2 + a21ay2. 

Similarly (19) and (20) imply that 

(v /K)V2w,-gaV~B,  = 0. (23 )  

Boundary conditions for perturbation variables 
At the upper boundary z = d + h, we have 

u.n = 0, kVB.n+qB = 0, (24L (25) 

2pDn, = aT [V(f?- (9) h)]  .t, 

A t  the interface z = 0, we have 
w = W,) 

At the lower boundary z = -am, we have 

w, = 0, (34) 

(35) k, ae,nlaz - qnl e, = 0. 

Here t and n denote tangential and normal unit vectors at  the surface, q and qm are 
heat-transfer coefficients, u is the surface tension, (Dij} is the rate-of-strain tensor in 
the fluid and V 2  is the horizontal Laplacian. 

Equations (24) and (34) express the condition that there is no mass flux across the 
boundaries, (25) and (35) are radiation-type conditions, (26) and (27) express the 
continuity of tangential and normal stress at the upper boundary, (28), (31), (32) and 
(33) express the continuity of normal velocity, normal stress, temperature and heat 
flux at the interface, and (29) and (30) are the conditions of Beavers & Joseph (1 967) 
relating the shear in the fluid to the slip velocity at  the interface; di is their constant. 



616 D. A .  Nield 

In  writing (26) we have assumed that the basic, conduction thermal distribution 
applies right up to the deformed boundary. This assumption is consistent with the 
constant-flux condition [(25) with q = 01 but when the general thermal condition (25) 
with q 9 0 applies it may be preferable to make an alternative assumption. 

When linearized, (24)-(27) become, at  z = d ,  

w = 0, 

k aelaz + qe = 0, 

2,u 8wfa.z - p  +pogh = aVih. (40) 

(We have assumed that a(To - 2'') < 1 in writing (40). This is in keeping with the 
Boussinesq approximation.) We can use the continuity equation (16) to write (38) 
and (39) as the single equation 

Similarly, using (16) and (19) we replace (27) and (28) by 

Finally, we eliminate p and pm from (31) by using (17), (20), (16) and (19) to obtain 

Status of the equations 

The Oberbeck-Boussinesq equations (1)-(3) are very well known, and equations (4)-(6) 
are also well established. The boundary conditions (24)-(27) are essentially those used 
by Smith (1966). Predictions based on the Pearson boundary condition (26) have been 
compared with experimental results obtained by several workers including Palmer & 
Berg (1971), and the agreement is generally satisfactory. With the exception of the 
Beavers-Joseph conditions (38) and (39), the remaining boundary conditions are 
routine and require no further comment. 

The BeaversJoseph condition was first presented as an empirical result, but a cer- 
tain amount of theoretical foundation for it has since been provided, and several 
subsequent experimental investigations have provided further support (see Neale & 
Nader 1974; Beavers, Sparrow & Masha 1974, and the references contained therein). 
Although other models for the porous-medium interface, e.g. that of Ene & Sanchez- 
Palencia (1975), lead to an alternative boundary condition, the BeaversJoseph 
condition appears to be the best established at  the present time. The results obtained 
in the present paper lay the basis for further experimental testing of the usefulness of 
this condition, since the other elements in our model are already reasonably well 
established. 



Convection in a fluid layer over a porous layer 517 

Non-dimensional formulation 

We choose separate scales for the fluid layer and porous medium,? so that our equations 
exhibit what symmetry there is in the problem; we note that there is no natural 
horizontal length scale here. 

For the fluid layer we write 

K , 8 = (To-Tu)e’, (2, y , z ,h)  = d(x’, y’,z’,h’), p = 11K - 
d2 p’ u = -u‘ 

d 

For the porous medium we write 

are the Rayleigh and Rayleigh-Darcy numbers for the two layers, and V,, denotes 
the gradient with respect to co-ordinates with subscript m. 

Similarly our boundary conditions may be written as follows. At z = 1, 

At z = 0, or zm = 1, 
Pw = wm, (52) 

e = Pem, aepz = aemlazm. (5% (56) 

f This type of scaling is particularly useful for the related problems involving two fluid layers, 
or two porous layers. The author hae performed, but not published, the analogous analysis for 
theso problems. 
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wm = 0, 

aempz,- B,e, = 0. 

B = qd/k,  B, = qmdm/km are Biot numbers, 
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At Z, = 0, 

Here 

while 

a~ (To-Tu)d M=-- is the Marangoni number, aT ,UUK 

G = g d 3 / v ~  is a gravitational number, 

S = ud/,w is a surface-tension number, 

We have used the fact that K ~ / K  = k,/k = 219, which follows since the steady-state 
heat flux is continuous across the interface. 

Normal-mode expansion 
We write 

subject to 

The separation constants a and a, are non-dimensional horizontal wavenumbers. 
Since the dimensional horizontal wavenumber must be the same for the fluid and 
porous medium if matching of solutions in the two layers is to be possible, we must have 
aid = am/dm, and hence a, = $a. 

We write D for the derivative dldz and D, for dldz,. We then have 

(61) 
(62) 

(63) 
(64) 

(65)s (66 )  

(67) 

(68) 

in O , < z , < l ,  

in 0 < z, < 1, 

1 
O }  

( D 2 - a 2 ) 2  W-Ru20 = 0 
W + ( D 2 - a 2 ) 0  = 0 

(0% - a:) W, + Rma& 0, = 
W m + ( D ~ - & ) O r n  = 0 

W(1) = 0, DO(l)+BO(l) = 0, 

DzW( 1) + Ma2[@( 1) - HI = 0, 

D3 W (  1) - 3a2D W (  1) - [Ga2 + #a4] H = 0, 

@’d[DW(O) - (PJ/di) 02W(O)] = DmWm(l), (70) 
TP2J3[D3W(O) - 3a2DW(0)]  = -Om%,( l), (71) 

O(0) = Pem(1), DO(0) = D,O,(l), (7211 (73)  

W,(O) = 0, DmOm(0)-B,,O,(O) = 0. (741, (75) 

f W 0 )  = W(1L (69) 

We thus have a tenth-order system of differential equations and, when H is 
eliminated, ten boundary conditions, forming a standard eigenvalue problem, whose 
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solution is routine but tedious. Noting that R, = P2p2d2R and a, = da, we see that 
we can regard R as the eigenvalue and a as a parameter. For the stability criterion we 
must minimize R as a function of a. In  view of the large number of parameters involved, 
and the absence of experimental data, it seems sensible to postpone any large-scale 
computation, and instead look a t  the case of constant-heat-flux boundary conditions. 
Then the minimization process can be effectively avoided, since we expect the critical 
wavenumber (which gives the minimum R )  to be zero as it is in the case of a single 
layer of fluid or porous medium. As a bonus we get a stability criterion in simple 
algebraic form, so that the effect of varying parameters can be quickly investigated. 

3. Solution for constant-heat-flux boundary conditions 

that a, = da, and write 
We take B = B, = 0, and expand in terms of a small wavenumber a. We recall 

The equations at order zero are 

w,(I) = 0, DO,(I) = 0, D ~ w , ( I )  = 0, 0 3 ~ , w , ( i )  = 0, 

' ~ ( 0 )  = W m o ( l ) ,  @ , ( O )  = $ O m o ( l ) ,  DO,(O) = 

?J[DW,(O) - (@/a) D2W,(0)] = D,W,( 1) = - P/PJ33W,(O),  

WmO(O) = 0, D,@,,(0) = 0. 

To within an arbitrary factor, the solution is 

w,(z) = 0, O O ( Z )  = 9, W,,(z) = 0, @,,(z) = 1. 

Using these results, the equations of order a2 become 

0°K = RoP 1 D&Wml = -Rm 1 
in O < z < l ,  in 0 < 2, < 1, (79) 

W, + D2@, = ?J W,,+D:@,, = 1) 
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We note that only one of the boundary conditions (80) involves the constants do and 
f,. Hence the temperature perturbation is left indeterminate to within a constant. 
The three boundary conditions involving DO, and D,O,, and the differential equa- 
tions involving D20, and O2Oml yield 

The remaining seven boundary conditions determine Ho and the constants co, c,, c2, c3, 
e, and el. Thus W, and W,, are determined and their expressions can be substituted 
into (82) to get an equation determining the eigenvalue. We thus obtain the result 

R(3- 12p+ (24-84p)h+7[84-240p+(384-960p) d+(300-720p)Pd 

+ (720 - 1 4 4 0 ~ )  h(d + 9 d )  1) + R,d29'-2(300 - 480p + (320 - 480p) 

x 9 + (720 + 9609) (1 - p) h + 71720 + 9609  + 2409JJ) 

+ iM(20 + 120h + 7[240 + 960d+ 72092 + 1440( 1 + 9) A])  

= (1 + b9-l) [960 - 1440p + 2880(1 -p)  A + 2 8 8 0 ~ (  1 + J ) ] ,  (83) 

where here p = M/G, h = $CI/dc", 7 = $2d2. 

We can check our formula against known results for some special cases (Nield 1967, 
1968). 

(i) Letting p +- O,z+ 0 and ,$-+ 0 with 9 = J/,$ finite, we get 

&R+&M = 1, 

the known result for a viscous fluid between one rigid and one free boundary. 
(ii) Letting p -f 0, d-+ 0 and h-t CO, we get 

&R+$ZM = 1,  

the result for a viscous fluid between two free boundaries. 
(iii) LettingpuO, d-tco, @+-a, h-tco and ?- to ,  we get 

R, = 3, 

the known result for a porous medium between one impermeable boundary and one 
boundary at  constant pressure. 

(iv) Letting p +- 0, d-+co, f'+ 0 and 7 -+a, we get 

Rvb = 12, 

the result for a porous medium between two impermeable boundaries. 
For most practical situations the value of 

will be negligibly small compared with unity. Also we know that $ = H / d ,  will 
normally be a small quantity,, while 3 is of order unity. Hence, unless d = d,/d is 
large, the quantities h and 7 will be small, and so will R,/R = @2@2, so that, to first 
order in $, equation (83) reduces to 
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As we should expect, the effect of increasing h is to reduce the critical value of R (or M )  
at which uonvection appears. 

It may not always be practical to measure To - T, and TL - To separately; usually 
the total temperature difference TL - Tu = AT will be measured. Equation (84) can 
be rearranged as 

960( 1 + 3h)pv(~d  + K,d,) (K,d + ~d,) AT = 
3( 1 + 8h)pgad6+ 20( 1 + 6h) ( - ac//aT) ds’ 

Similarly, the general relationship (83)  gives AT in terms of d,  d, and the properties 
of the fluid and porous medium. 

To complete the calculation of the eigenfunctions W ,  W,, 0 and 0, is simple but 
tedious, and we do not present the result. We already know what to expect. Since 
k,/k is likely to be of order unity in practical situations, the temperature perturba- 
tion (@,a,) will be a continuous function with a single peak occurring more or less 
midway between the boundaries, and hence in the layer of greater depth. In  contrast, 
/3 will usually be small, and (54) implies that then the continuous function ( W ,  W,) 
will have its peak near the interface. 

The deflexion of the upper free surface is a quantity of interest. We fkd that 

(86) 
3(1 +4h+87(1+d)]$R+l2$-@R,- 12(1+2h)$M 

8G{l+3h+3~(1+d)-12p(1+2A)} 
Ho = 

Thus if p = M/G is small, Ho is positive for buoyancy-induced convection (R, R, =t= 0, 
M = 0) and negative for surface-tension-induced convection (R = R, = 0, M =t= 0) ,  
while the signs are reversed if p is sufficiently large, in accordance with the results of 
Scriven & Sterling (1964) and Smith (1966). 

4. Conclusion 
We have solved our problem for the case of constant-flux boundary conditions. 

Results obtained for this special case should be qualitatively useful for estimating the 
stability criterion for more general thermal boundary conditions, when the critical 
wavenumber will no longer be zero, and when the surface-tension parameter S will 
play a part. The effects of S can be estimated from our present results by noting that it 
enters only in the combination G+azS [through condition (68)l and that a, will 
usually be of order unity. Hence, to a first approximation, the effects of S and G are 
additive. 

The author is grateful to Dr D. D. Joseph for introducing him to this problem while 
the author was on sabbatical leave from the University of Auckland and enjoying the 
hospitality of the Department of Aerospace Engineering and Mechanics, University 
of Minnesota. 
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